Những câu hỏi liên quan
bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2019 lúc 14:03

a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)

\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)

\(\Rightarrow x=-\frac{1}{2}\)

b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)

\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)

\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)

\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)

"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
23 tháng 11 2019 lúc 12:54
Bình luận (0)
 Khách vãng lai đã xóa
Cát Cát Trần
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2020 lúc 13:53

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:

\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)

\(\Rightarrow yz=5xy\Rightarrow z=5x\)

Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)

\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)

Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)

\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)

Bình luận (0)
Nguyễn Việt Lâm
4 tháng 8 2020 lúc 13:57

b/ Do các vế trái đều ko âm nên x;y;z không âm

- Nhận thấy nếu 1 biến bằng 0 thì 2 biến còn lại cũng bằng 0 nên \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

- Với \(x;y;z>0\) ta có:

\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2\sqrt{x^2.1}}=x\Rightarrow y\le x\)

Tương tự: \(z=\frac{2y^2}{1+y^2}\le y\) ; \(x=\frac{2z^2}{1+z^2}\le z\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Thay vào pt đầu:

\(\frac{2x^2}{1+x^2}=x\Leftrightarrow\frac{2x}{1+x^2}=1\Leftrightarrow2x=x^2+1\)

\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=y=z=1\)

Vậy: \(\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)

Bình luận (0)
Thảo Phương
Xem chi tiết
Akai Haruma
2 tháng 12 2019 lúc 18:40

Lời giải:

Dễ thấy vế trái của mỗi PT trong hệ đã cho đều dương nên $y,x,z>0$

Áp dụng BĐT AM-GM cho các số dương:

$x^2+1\geq 2x\Rightarrow y=\frac{2x^2}{x^2+1}\leq \frac{2x^2}{2x}$ hay $y\leq x(1)$

Hoàn toàn tương tự:

$z=\frac{2y^2}{y^2+1}\leq y(2)$

$x=\frac{2z^2}{z^2+1}\leq z(3)$

Từ $(1);(2);(3)\Rightarrow x=y=z$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2=y^2=z^2=1\\ x,y,z>0\end{matrix}\right.\) hay $x=y=z=1$

Bình luận (0)
 Khách vãng lai đã xóa
Vân Trần Thị
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 6 2019 lúc 22:25

Ta có \(1+x^2\ge2x\Rightarrow y=\frac{2x^2}{1+x^2}\le\frac{2x^2}{2x}=x\Rightarrow y\le x\)

Tương tự: \(\frac{2y^2}{1+y^2}=z\Rightarrow z\le y\); \(\frac{2z^2}{1+z^2}=x\Rightarrow x\le z\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\x\le z\\z\le y\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Thay vào pt đầu: \(\frac{2x^2}{1+x^2}=x\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{2x}{1+x^2}=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=1\end{matrix}\right.\)

Vậy \(x=y=z=1\)

Bình luận (0)
bach nhac lam
Xem chi tiết
bach nhac lam
23 tháng 2 2020 lúc 11:25
Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 2 2020 lúc 12:18

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 2 2020 lúc 12:18

2/

\(A\ge\frac{8a^2+1-a}{4a}+b^2=2a+\frac{1}{4a}+b^2-\frac{1}{4}=a+\frac{1}{4a}+b^2+a-\frac{1}{4}\)

\(A\ge a+\frac{1}{4a}+b^2+1-b-\frac{1}{4}=a+\frac{1}{4a}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\ge1+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b/ Giả thiết tương đương:

\(a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow\frac{a}{b+1}+\frac{b}{a+1}=2\)

Hình như bạn ghi nhầm biểu thức

Đặt \(\left(\frac{a}{b+1};\frac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x+y=2\\0\le x;y\le2\end{matrix}\right.\)

\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+\left(xy\right)^3\)

\(=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)

\(=\left(xy\right)^3-6xy+9=9-xy\left(6-\left(xy\right)^2\right)\)

Do \(xy\le1\Rightarrow6-\left(xy\right)^2>0\Rightarrow xy\left(6-\left(xy\right)^2\right)\ge0\)

\(\Rightarrow P\le9\Rightarrow P_{max}=9\) khi \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) hay \(\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)

Câu c giống câu này:

https://hoc24.vn/hoi-dap/question/790896.html

Bạn tham khảo tạm, cách đó quá dài nên chắc chắn ko tối ưu, nó trâu bò quá

Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 0:21

a/ Đơn giản là dùng phép thế:

\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)

\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)

Thế vào pt cuối:

\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

Vậy là xong

b/ Sử dụng hệ số bất định:

\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)

\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)

Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)

Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):

\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:43

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:59

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:48

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
Armldcanv0976
Xem chi tiết
Phan Công Bằng
22 tháng 8 2019 lúc 22:43

\(a)DK:z\ne1\)

\(\left\{{}\begin{matrix}\frac{4}{z-1}+2x=7\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{z-1}+x=\frac{7}{2}=3,5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-5y=-5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=-8\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\5x=15\\\frac{2}{z-1}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(T/m\right)\)

Vậy ...

\(b)DK:\left\{{}\begin{matrix}x,y,z\ne0\\x,y,z>0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{matrix}\right.\)

\(\Leftrightarrow x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}=6\)

\(\Leftrightarrow\left(x-2.\sqrt{x}.\frac{1}{\sqrt{x}}+\frac{1}{x}\right)+\left(y-2.\sqrt{y}.\frac{1}{\sqrt{y}}+\frac{1}{y}\right)+\left(z-2\sqrt{z}.\frac{1}{\sqrt{z}}+\frac{1}{z}\right)+2+2+2=6\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=0\)

\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2;\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2;\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=\frac{1}{\sqrt{x}}\\\sqrt{y}=\frac{1}{\sqrt{y}}\\\sqrt{z}=\frac{1}{\sqrt{z}}\end{matrix}\right.\)

\(\Leftrightarrow x=y=z=1\left(T/m\right)\)

Vậy ...

Bình luận (0)
bach nhac lam
Xem chi tiết
Trần Thùy Linh
25 tháng 4 2020 lúc 13:04

\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)

\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)

Áp dụng bđt AM-GM ta có

\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)
tthnew
25 tháng 4 2020 lúc 16:02

b) Mạnh hơn, và dễ dàng hơn là:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{\sum c\left(a-b\right)^2}{abc}\)

Nó tương đương với: \({\frac {{a}^{2}}{{b}^{2}}}+{\frac {{b}^{2}}{{c}^{2}}}+{\frac {{c}^{2} }{{a}^{2}}}+3-2\,{\frac {a}{b}}-2\,{\frac {b}{c}}-2\,{\frac {c}{a}} \geqq 0\)

Là hiển nhiên vì \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\)

Đơn giản:))

Bình luận (0)
tthnew
25 tháng 4 2020 lúc 16:46

a) Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow ab+bc+ca=1;0< a,b,c< 1\)

Cần chứng minh: \(P=\sum\frac{\frac{1}{a}-1}{\frac{1}{b^2}}=\sum\frac{b^2-ab^2}{a}\ge\sqrt{3}-1\)

Hay là: \(\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)\sqrt{ab+bc+ca}\ge\left(\sqrt{3}-1\right)\left(ab+bc+ca\right)+a^2+b^2+c^2\)

\(\Leftrightarrow\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)^2\left(ab+bc+ca\right)\ge\) \(\Big[ (\sqrt{3} -1) (ab+bc+ca) +a^2+b^2+c^2\Big]^2\)

Giả sử \(c=\min\{a,b,c\}\) và đặt \(a=c+u, \, b=c+v \, (u,\, v \geq 0)\)

Nếu mình không nhìn nhầm, sau khi rút gọn, nhóm lại theo biến c, bạn nhận được một cái gì đó gọi là hiển nhiên haha

Chúc may mắn, mình mới rút gọn thử thì thấy có vẻ hiển nhiên thật :))

Bình luận (0)